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Abstract

In practical applications of item response theory (IRT), item parameters are usually estimated first

from a calibration sample. After treating these estimates as fixed and known, ability parameters

are then estimated. However, the statistical inferences based on the estimated abilities can be

misleading if the uncertainty of the item parameter estimates is ignored. Instead, estimated

item parameters can be regarded as covariates measured with error. Along the line of this

measurement-error-model approach, asymptotic expansions of the maximum likelihood estimator

(MLE) and weighted likelihood estimator (WLE) of ability were derived by Zhang, Xie, Song, and

Lu (2007). In this paper, we propose an estimator of an ability parameter based on the asymptotic

formula of the WLE. A simulation study shows that the new estimator effectively reduces the bias

of the MLE or WLE of ability caused by the uncertainty of the item parameter estimates not

taken into account.

Key words: Bias reduction, item response theory (IRT), maximum likelihood estimator (MLE),

measurement error, weighted likelihood estimator (WLE).
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1 Introduction

In practical applications of item response theory (IRT), item parameters are usually estimated

first from a calibration sample. After treating these estimates as fixed and known, ability

parameters are then estimated and further statistical inferences are made. When item parameter

estimation is sufficiently accurate, it may not be problematic to substitute the estimated item

parameters for the true ones in the IRT models when estimating ability parameters. However,

when the measurement errors in item parameter estimates are no longer ignorable, the statistical

inferences based on such a substitution could be misleading. For instance, Tsutakawa and

Johnson (1990) demonstrated that both the maximum likelihood and empirical Bayes approaches

underestimate the variance of ability when the uncertainty of item parameter estimates is ignored.

Given item parameters, Lord (1983, 1986) and Samejima (1993a, 1993b) used Taylor’s

expansion of the likelihood equation to obtain an approximation for the bias and its standard

error formulae for the maximum likelihood estimator (MLE) of ability in the context of different

IRT models. Based on Lord’s bias function, Warm (1989) used the weighted likelihood estimation

method to estimate ability parameters and showed that the weighted likelihood estimator (WLE)

is less biased than the MLE with the same asymptotic variance and normal distribution. Assuming

item parameters are known, the WLE method is effective in reducing bias.

However, when item parameters are unknown and estimated item parameters are used as

substitutes for the true ones in likelihood functions, as would be the case in all applications,

the WLE method for ability estimation is not as effective for the 3PL case (Zhang, 2005). As a

result, the measurement error in item parameter estimation must be considered as a potential

contaminator of the ability estimation as well. The bias of the MLE of ability based on fixed

estimated item parameters comes from two sources: (a) the bias of the MLE of ability given true

item parameters, and (b) the measurement error from the uncertainty of the item parameters.

Lord (1983, 1986), Warm (1989), and Samejima (1993a, 1993b) only investigated the first of these

sources. Various approaches have also been proposed to address the measurement error resulting

from the uncertainty of item parameters (Lewis, 1985, 2001; Mislevy, Wingersky, & Sheehan,

1994; Song, 2003; Tsutakawa & Johnson, 1990; Zhang, Xie, Song, & Lu, 2007). One of these

approaches, the measurement-error-model approach, treats estimated item parameters as
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covariates measured with errors, instead of treating them as being fixed in nature (Song, 2003;

Zhang, et al., 2007). Thus, a bias-correction formula can be developed along the line of what has

been done in research on measurement error models (Stefanski & Carroll, 1985). In this paper,

we propose a bias-corrected estimator of an ability parameter based on the asymptotic expansion

formula of the WLE of ability. A simulation study is conducted to compare the new method with

the MLE and WLE methods in terms of the bias and the root mean squared errors (RMSE) of

estimated abilities. The result shows that the new estimator effectively reduces the bias in the

cases considered in the simulation study.

2 The Effect of Uncertainty About Item Parameters on Ability Estimation

Suppose a test consists of n dichotomous items. Let y = (y1, . . . , yn) be the response

vector of an examinee with yi = 1 (correct) or yi = 0 (incorrect) for i = 1, . . . , n. The item

response function (IRF) of a 3PL model is

Pi(θ) = P (θ; ai, bi, ci) = P (yi = 1|θ) = ci + (1− ci)
1

1 + exp {−1.7ai(θ − bi)}
, (1)

where ai, bi, and ci are the item discrimination, difficulty, and guessing parameters, respectively.

Let

P ∗i (θ) =
1

1 + exp {−1.7ai(θ − bi)}
(2)

denote a 2PL model. Thus, Pi(θ) = ci + (1− ci)P ∗i (θ). The 3PL model is often rewritten as

Pi(θ) = ci + (1− ci)
1

1 + exp {−1.7(aiθ + di)}
, (3)

where di = −aibi is the intercept parameter.

The MLE of examinee’s ability is commonly used in practice (Birnbaum, 1968; Wang

& Vispoel, 1998; Yi, Wang, & Ban, 2001). Under the assumptions of local or conditional

independence (Lord, 1980), the likelihood function for the response vector y is

L(y | θ) =
n∏

i=1

P yi
i (θ) Q1−yi

i (θ), (4)

where Qi(θ) = 1 − Pi(θ). If item parameters (ai, bi, ci) in these models are known, the MLE

θ̂m of ability is defined as the value of θ that maximizes (4). In practice, θ̂m is often found by setting
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the derivative of the likelihood function to zero; that is, θ̂m satisfies

∂ lnL(y | θ)
∂θ

=
n∑

i=1

(
yi − Pi(θ)
Pi(θ)Qi(θ)

)
P

′
i (θ) = 0, (5)

where P
′
i (θ) is the first derivative of Pi(θ) with respect to θ (see Lord, 1980). Since

P
′
i (θ) = 1.7aiP

∗
i (θ)Qi(θ), the likelihood equation (5) becomes

n∑
i=1

aiKi(θ)(yi − Pi(θ)) = 0, (6)

where

Ki(θ) = K(θ; ai, bi, ci) =
P ∗i (θ)
Pi(θ)

=
1

1 + ci exp {−1.7ai(θ − bi)}
.

Let

I(θ) =
n∑

i=1

(P
′
i (θ))

2

Pi(θ)Qi(θ)

be the Fisher test information function. The variance of the MLE of θ is Var(θ̂) = 1/I(θ̂). After

some calculations,

I(θ) = 1.72
n∑

i=1

a2
i (1− ci)P ∗i (θ)Q∗i (θ)Ki(θ), (7)

where Q∗i (θ) = 1− P ∗i (θ).

The likelihood function is strictly increasing or decreasing for an all-correct-response pattern

(i.e., a perfect score) or an all-incorrect-response pattern (i.e., a zero score). Thus, the MLE of

ability corresponding to a perfect score or a zero score is +∞ or −∞. Bayes estimators of ability

corresponding to perfect scores and zero scores can be finite if an informative prior distribution

of ability is appropriately used. This is a major reason why a Bayesian method is sometimes

preferred. In practice, examinees with perfect scores or zero scores are usually assigned the highest

or lowest scores, such as an 800 or a 200 in SAT R© subject tests. A Bayesian method basically also

gives a fixed value for each of the two extreme cases given a fixed prior distribution. In effect, any

value can be a reasonable estimate of abilities of examinees with perfect scores as long as the value

is at least as large as the ability estimates of all other examinees, regardless of estimation methods.

Similarly, a reasonable estimate of ability with a zero score should be no larger than the ability

estimates of all other examinees. Therefore, the shortcoming of the MLE of ability corresponding

to perfect scores and zero scores can be easily overcome by constraining the range of ability on a

closed, but large enough, interval, say [−4, 4], so that the MLE of ability for a perfect score
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or a zero score is the upper or lower endpoint of the interval (see Lord, 1983; Zhang, 2005). Note

that this paper will not further consider the bias of the ability estimates in these extreme cases.

Given item parameters, Lord (1983) obtained the following bias function for the MLE of θ:

B(θ) =
1.7

I2(θ)

n∑
i=1

aiIi(θ)
(

P ∗i (θ)− 1
2

)
, (8)

where Ii(θ) is the item information function of item i, that is,

Ii(θ) =
(P

′
i (θ))

2

Pi(θ)Qi(θ)
= 1.72a2

i (1− ci)P ∗i (θ)Q∗i (θ)Ki(θ).

The MLE with Lord bias-correction (MLE-LBC) of θ is defined as

θ̂c = θ̂m −B(θ̂m).

The bias of θ̂c, BIAS(θ̂c), is o(n−1) (i.e., limn→∞ nBIAS(θ̂c) = 0) while BIAS(θ̂m) is O(n−1)

(i.e., nBIAS(θ̂m) are bounded for all n) under the assumption that the true values of the item

parameters are known.

Based on Lord’s work, Warm (1989) proposed the weighted likelihood estimation method and

showed that the WLE of ability is less biased than the MLE with the same asymptotic variance

and normal distribution. The WLE θ̂w is defined as the value of θ that maximizes

f(θ)L(y | θ) = f(θ)
n∏

i=1

P yi
i (θ) Q1−yi

i (θ),

where f(θ) is a suitably chosen function satisfying

∂ ln f(θ)
∂θ

= −B(θ)I(θ).

Therefore, θ̂w satisfies the following weighted likelihood equation,

∂ ln[f(θ)L(y | θ)]
∂θ

=
n∑

i=1

(
yi − Pi(θ)
Pi(θ)Qi(θ)

)
P

′
i (θ)−B(θ)I(θ) = 0.

That is,

1.7
n∑

i=1

aiKi(θ)[yi − Pi(θ)]−B(θ)I(θ) = 0. (9)
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In reality, both item and ability parameters are unknown. As mentioned in the previous

section, it is a common practice to estimate item parameters first and then treat the estimates

as if they were the true quantities in estimating ability parameters. That is, the MLE of an

ability parameter is obtained by assuming estimated item parameters âi, b̂i, and ĉi are fixed as

substitutes for true parameters. Thus, θ̂m satisfies

n∑
i=1

âiK̂i(θ)(yi − P̂i(θ)) = 0 (10)

instead of (6), where P̂i(θ) = P (θ; âi, b̂i, ĉi) and K̂i(θ) = K(θ; âi, b̂i, ĉi), while θ̂w satisfies

1.7
n∑

i=1

âiK̂i(θ)[yi − P̂i(θ)]− B̂(θ)Î(θ) = 0 (11)

instead of (9). The MLE, or the WLE, based on these fixed estimated item parameters will

converge to some value, say θ∗, according to large sample theory under proper regularity

conditions, when the number of items becomes larger and larger. However, θ∗ will not necessarily

be the true ability parameter θ. Thus, the WLE and MLE-LBC methods actually try to reduce

the “bias” against θ∗, not the bias against the true θ, since these methods just aim to reduce the

bias of MLE given item parameters.

In order to correct the bias properly, uncertainty about item parameters or errors of estimated

item parameters should be also considered. Specifically, item parameter estimators can be

regarded as covariates measured with error. Suppose that item parameters are estimated using

a calibration sample with J examinees. Let âi, b̂i, ĉi, and d̂i be the item parameter estimators.

Note that these estimators are related to J . The label J is usually suppressed in these and other

related quantities for convenience, unless necessary. Let

E(âi) = ai + δai, E(b̂i) = bi + δbi, E(ĉi) = ci + δci,

Var(âi) = σ2
ai, Var(b̂i) = σ2

bi, Var(ĉi) = σ2
ci, (12)

Cov(âi, b̂i) = σabi, Cov(b̂i, ĉi) = σbci, Cov(âi, ĉi) = σaci, (13)

where δai, δbi, and δci are the biases of corresponding item parameter estimators; σai, σbi, and
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σci are the corresponding standard errors; and σabi, σbci, and σaci are the covariances of item

parameter estimators. In other words, item parameter estimators are measured with error,

âi = ai + δai + εai,

b̂i = bi + δbi + εbi,

ĉi = ci + δci + εci,

where {(εai, εbi, εbi)} is an independent sequence of random vectors1 with mean zero and covariance

matrix 
σ2

ai σabi σaci

σabi σ2
bi σbci

σaci σbci σ2
ci

 .

The theorem below requires the regularity conditions. These conditions and their explanations

or justifications will be presented first.

Regularity Conditions

(C0) Item parameters ai and bi are uniformly bounded and ci is bounded away from 1. θ is a

bounded variable.

(C1) There exists n0 such that for any n > n0,

lim
J→∞

σ2
n = 0,

where

σ2
n = max

1≤i≤n
{σ2

ai, σ
2
bi, σ

2
ci, δ

2
ai, δ

2
bi, δ

2
ci}.

(C2)

lim
J→∞

1
n

n∑
i=1

Var[(âi − ai)2] = 0, lim
J→∞

1
n

n∑
i=1

Var[(b̂i − bi)2] = 0,

lim
J→∞

1
n

n∑
i=1

Var[(âi − ai)(b̂i − bi)] = 0, lim
J→∞

1
n

n∑
i=1

Var[(ĉi − ci)2] = 0,

lim
J→∞

1
n

n∑
i=1

Var[(âi − ai)(ĉi − ci)] = 0, lim
J→∞

1
n

n∑
i=1

Var[(b̂i − bi)(ĉi − ci)] = 0.
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(C3) (âi − ai)/σai, (b̂i − bi)/σbi, and (ĉi − ci)/σci have uniformly bounded 4 moments.

(C4) For any fixed θ, there exists c0(θ) > 0 such that

lim inf
n→∞

I(θ)/n ≥ c0(θ) > 0.

In effect, (C0), which is also required by Lord (1983), holds in all applications. Regularity

Condition (C1) states that the biases and standard errors of item parameter estimators converge

to zero when the calibration sample size tends to infinity, which means that item parameter

estimation results from the calibration sample are reasonable. So is (C2). Regularity Condition

(C3) is a very weak assumption under (C0). Regularity Condition (C4) should hold for all

well-designed tests with reasonable IRT models when θ is bounded. In fact, it is commonly

assumed. For example, Chang and Stout (1993) also required this condition when proving the

asymptotic posterior normality of the latent ability.

Under the regularity conditions, Zhang et al. (2007) obtained the following asymptotic

expansion results for the MLE and WLE of ability. In the following theorem, notations op(·) and

Op(·) are needed, so that Fm = Gm + op(Hm) means that (Fm − Gm)/Hm converges to zero in

probability, and Fm = Op(1) means that {Fm} are bounded in probability, whereas o(·) and O(·)

are in regular sense (see Serfling, 1980). Let

Li(θ) =
Q∗i (θ)
Pi(θ)

=
1

ci + exp {1.7ai(θ − bi)}
.

Theorem (Zhang, Xie, Song, & Lu, 2007)

Suppose that θ̂m is the regular MLE of θ and satisfies (10) and θ̂w is the regular WLE of θ

and satisfies (11), where estimated item parameters are regarded as fixed and known. Assume

that Regularity Condition (C0)–(C4) hold. Then

θ̂m = θ + [Jn(θ) + Qn(θ) + Zn(θ)]/I(θ) + op

(
max

(
σ2

n,
1√
n

))
, (14)

and

θ̂w = θ + [Jn(θ) + Qn(θ) + Zn(θ)−B(θ)I(θ)]/I(θ) + op

(
max

(
σ2

n,
1√
n

))
, (15)
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where I(θ) is the Fisher test information function given by (7), B(θ) is given by (8) and

Jn,1(θ) = −1.72
n∑

i=1

(θ − bi)(1− ci)P ∗i (θ)Q∗i (θ)Ki(θ){
1.7ai(θ − bi)

[
1
2
− P ∗i (θ) + ciLi(θ)

]
+ 1

}
(σ2

ai + δ2
ai),

Jn,2(θ) = −1.73
n∑

i=1

a3
i (1− ci)P ∗i (θ)Q∗i (θ)Ki(θ)

[
1
2
− P ∗i (θ) + ciLi(θ)

]
(σ2

bi + δ2
bi),

Jn,3(θ) = 1.72
n∑

i=1

2ai(1− ci)P ∗i (θ)Q∗i (θ)Ki(θ){
1.7ai(θ − bi)

[
1
2
− P ∗i (θ) + ciLi(θ)

]
+ 1

}
(σabi + δaiδbi),

Jn,4(θ) = 1.7
n∑

i=1, ci>0

aiQ
∗
i (θ)Ki(θ)Li(θ)(σ2

ci + δ2
ci),

Jn,5(θ) = 1.7
n∑

i=1 ci>0

Q∗i (θ)Ki(θ) {1.7ai(θ − bi)[1− 2ciLi(θ)]− 1} (σaci + δaiδci),

Jn,6(θ) = −1.72
n∑

i=1 ci>0

a2
i Q
∗
i (θ)Ki(θ)[1− 2ciLi(θ)](σbci + δbiδci),

Jn(θ) = Jn,1(θ) + Jn,2(θ) + Jn,3(θ) + Jn,4(θ) + Jn,5(θ) + Jn,6(θ),

Qn,1(θ) = −1.72
n∑

i=1

ai(θ − bi)(1− ci)P ∗i (θ)Q∗i (θ)Ki(θ)δai,

Qn,2(θ) = 1.72
n∑

i=1

a2
i (1− ci)P ∗i (θ)Q∗i (θ)Ki(θ)δbi,

Qn,3(θ) = −1.7
n∑

i=1,ci>0

aiQ
∗
i (θ)Ki(θ)δci,

Qn(θ) = Qn,1(θ) + Qn,2(θ) + Qn,3(θ),

Zn(θ) = 1.7
n∑

i=1

aiKi(θ)(yi − Pi(θ)).

The theorem provides the error terms or biases of the naive MLE and WLE of ability obtained

by treating estimated item parameters as though they were the true values while they are actually

associated with measurement error. The bias is asymptotically a function of the biases {δai, δbi,

δci} and covariance matrixes {Σi} of item parameter estimators. Therefore, given {δai, δbi, δci}
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and {Σi}, one may calculate the values of biases of the MLE and WLE of ability using (14) and

(15), respectively. One can also determine the range of the bias of the MLE or WLE of ability

if the range of the biases, the variances, and the covariances of item parameter estimators are

known. Thus, one can evaluate the impact of measurement errors of item parameter estimators on

ability estimation and decide whether the naive MLE or WLE is accurate enough in the situation

considered.

Note that the term Qn(θ)/I(θ) represents the component of the bias of the ability estimator

that is caused by {δai, δbi, δci} only. The term Jn(θ)/I(θ) relates to the components of the bias

caused by both {δai, δbi, δci} and {Σi}, while B(θ), I(θ), and Zn(θ) are independent from any of

those quantities. Notice that Qn,2(θ) can be rewritten as Qn,2(θ) =
∑n

i=1 Ii(θ)δbi, where Ii(θ) is

the item information function of item i, and
∑n

i=1 Ii(θ) = I(θ). Thus, Qn,2(θ)/I(θ) is the weighted

average bias of item difficulty parameters with item information as the weights.

The theorem does not restrict the method of item parameter estimation for a calibration

sample. Hence, any regular joint MLE, marginal MLE, or Bayesian estimation methods can be

used to estimate item parameters before applying the theorem. However, the effectiveness of the

theorem obviously depends on the accuracy of the estimation of the item parameters, the biases,

the variances, and the covariances of item parameter estimators.

When applying the theorem to a practical situation, one needs the estimates of {δai, δbi,

δci} and {Σi}. Usually, a calibration program provides a set of estimation results either for

parameters (ai, bi, ci) of (1) or for parameters (ai, di, ci) of (3). For example, PARSCALE

presents an estimate of the covariance matrix of (âi, d̂i, ĉi). Using the delta method, given

the estimation results based on (3), one can obtain the results based on (1) and vice-versa. If

a calibration program could not provide accurate enough estimates of {Σi}, one can always

calculate the appropriate information matrix or Hessian matrix to obtain estimates of these

covariance matrixes. However, estimates of δai, δbi, and δci are typically not directly available

from a calibration program. A Monte-Carlo simulation with some replications or the bootstrap

method (Efron, 1982) is needed to obtain estimates of biases of item parameter estimators in

practice. For example, one may use estimated item and ability parameters to generate 100 sets of

simulated response data using a setting as similar as possible to the original data and then calibrate
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each set of these data. The average of the discrepancies of newly estimated item parameters from

the original (estimated) item parameters across 100 replications can be used as estimates for the

bias of item parameter estimators. The sample covariance matrix of (âi, b̂i, ĉi) based on the 100

replications can also be calculated and used as a substitute for the estimate of the covariance

matrix of (âi, b̂i, ĉi). Thus, B(θ), I(θ), Jn(θ), Qn(θ), and Zn(θ) can be replaced by their estimates,

B̂(θ̂), Î(θ̂), Ĵn(θ̂), Q̂n(θ̂), and Ẑn(θ̂), respectively. Here θ̂ is either θ̂m or θ̂w.

In this paper, we focused on θ̂w because the WLE produces slightly better results than the

MLE and MLE-LBC (see Hoijtink & Boomsma, 1995; Zhang, 2005). By (11), we know that

Ẑn(θ̂w)− B̂(θ̂w)Î(θ̂w) = 0. Thus, we may only need to correct the bias in [Jn(θ)+Qn(θ)]/I(θ) from

the corresponding WLE to further reduce the bias of the WLE of θ. That is, the bias-corrected

ability parameter estimator is

θ̂wc = θ̂w − [Ĵn(θ̂w) + Q̂n(θ̂w)]/Î(θ̂w). (16)

This estimator is called the corrected weighted likelihood estimator (CWLE), indicating that the

final estimator corrects error terms based on the WLE.

3 A Simulation Study

A simulation study was conducted to compare MLE, WLE, and CWLE. Specifically,

the study attempted to determine which method produces the best ability-estimation result. The

estimated item parameters from the 1998 National Assessment of Educational Progress (NAEP)

grade 4 reading assessment were used to generate simulated response data (Allen, Donoghue, &

Schoeps, 2001). Among 60 items used in the simulation study, there are 26 2PL items and 34 3PL

items. These item parameters are presented in Table 1.

The simulation study has two stages. In the first stage, item parameters are estimated from

a simulated calibration sample. These estimated item parameters are used as fixed to estimate

individual ability parameters of a simulated target sample in the second stage.
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Table 1

Item Parameters Used in the Simulation Study

Item a b c Item a b c

1 0.623 -0.872 0.000 31 1.342 -0.457 0.175

2 0.920 1.008 0.000 32 1.110 0.148 0.244

3 1.052 1.009 0.000 33 1.228 0.259 0.247

4 0.754 0.015 0.000 34 0.951 -0.864 0.319

5 0.763 -0.284 0.000 35 1.472 1.204 0.167

6 1.025 0.107 0.000 36 1.859 0.213 0.265

7 0.647 -1.008 0.000 37 1.133 0.916 0.297

8 0.520 -1.425 0.000 38 1.374 0.307 0.269

9 0.757 -0.630 0.000 39 0.504 -0.932 0.247

10 0.832 1.118 0.000 40 1.415 0.891 0.271

11 1.123 1.057 0.000 41 2.303 0.609 0.418

12 0.814 0.306 0.000 42 0.966 -1.318 0.244

13 0.506 -1.272 0.000 43 1.029 0.327 0.300

14 0.269 -0.904 0.000 44 0.721 -1.193 0.247

15 1.172 0.645 0.000 45 0.941 0.401 0.264

16 0.877 -0.523 0.000 46 0.793 0.642 0.247

17 0.761 -1.242 0.000 47 1.032 0.507 0.248

18 0.619 -1.113 0.000 48 0.533 -0.835 0.218

19 1.154 0.645 0.000 49 1.203 0.257 0.165

20 1.536 1.192 0.000 50 1.104 -0.155 0.247

21 0.597 1.341 0.000 51 1.464 0.774 0.138

22 0.970 0.906 0.000 52 2.300 0.416 0.264

23 1.086 -0.060 0.000 53 0.562 -0.073 0.237

24 0.795 -0.238 0.000 54 0.883 -1.015 0.310

25 0.838 -0.076 0.000 55 1.261 1.084 0.206

26 1.031 -0.310 0.000 56 0.597 -0.206 0.156

27 1.506 -0.495 0.215 57 0.938 -1.691 0.294

28 0.607 0.712 0.251 58 1.414 -0.608 0.275

29 1.288 0.554 0.190 59 1.185 -0.590 0.312

30 1.798 -0.899 0.248 60 0.579 -0.688 0.276

Note. Data from the 1998 NAEP Grade 4 Reading Assessment.
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The numbers of examinees in simulated calibration samples are 250, 500, and 1,000.

Examinees’ ability parameters were independently generated from a standard normal distribution.

Based on these ability parameters and the item parameters shown in Table 1, 100 sets (for 100

replications) of calibration response data were generated using IRT method for each of the three

sample sizes. Each simulated data set was used to estimate item parameters separately. In this

study, a NAEP version of PARSCALE (Allen et al., 1999; Muraki & Bock, 1991) was used to

estimate item parameters. Tables 2–4 present the bias of estimated item parameters based on

100 replications for sample sizes 250, 500, and 1,000, respectively. The covariance matrixes are

not reported here because their sizes are too large. Each of these 300 sets of estimated item

parameters will be used as fixed and known when estimating ability parameters in the next stage.

In the second stage, the MLE, WLE, and CWLE methods are used to estimate ability

parameters. Since the performance of MLE, WLE, or CWLE might be different at the different

ability levels, we evaluated the ability-estimation accuracy at several ability levels. That is, we

compared the results from the three ability-estimation methods to determine which method gives

the best ability estimation result at these ability levels. Specifically, we chose 13 ability levels

in this simulation. They are −3.0, −2.5, . . . , 2.5, and 3.0. Using these ability values and the

item parameters in Table 1, simulated response data were generated again using IRT method.

Regarding the estimated item parameters from a calibration sample in the first stage as fixed and

known, θ̂m and θ̂w were obtained for each examinee in the newly simulated response data. Then,

the biases, variances, and covariances of estimated item parameters obtained in the first stage

were used to calculate the bias-correction term in (16), [Ĵn(θ̂w) + Q̂n(θ̂w)]/Î(θ̂w), so as to obtain

θ̂wc. For each set of estimated item parameters, the process was repeated 100 times.

The measurement precision of θ̂m, θ̂w, and θ̂wc was evaluated by comparing the conditional

bias and the RMSE at each ability level. RMSE is the square root of the average of the squared

deviations of estimated parameters from the true one. Tables 5–7 and Figures 1–3 show the biases

and RMSEs of θ̂m, θ̂w, and θ̂wc at each of the 13 ability levels when item parameters are estimated

from calibration samples of 250, 500, and 1,000 examinees, respectively.
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Table 2

Bias of Estimated Item Parameters With

Calibration Sample Size 250, Based on 100 Replications

Item a b c Item a b c

1 0.0225 -0.0468 0.0000 31 0.0458 -0.0051 0.0330

2 -0.0051 -0.0341 0.0000 32 -0.0429 -0.0958 -0.0162

3 -0.0269 -0.0122 0.0000 33 -0.0729 -0.0894 -0.0238

4 0.0309 -0.0633 0.0000 34 -0.0097 -0.2190 -0.0920

5 0.0159 -0.0375 0.0000 35 -0.1097 0.0286 0.0132

6 0.0029 -0.0437 0.0000 36 -0.2607 -0.1298 -0.0367

7 0.0440 -0.0343 0.0000 37 -0.1691 -0.1687 -0.0528

8 0.0531 0.0427 0.0000 38 -0.1416 -0.1409 -0.0372

9 0.0272 -0.0594 0.0000 39 0.0865 0.0689 -0.0149

10 0.0173 -0.0293 0.0000 40 -0.2276 -0.0913 -0.0334

11 -0.0060 -0.0287 0.0000 41 -0.9640 -0.3142 -0.1201

12 0.0299 -0.0488 0.0000 42 0.0271 -0.0589 -0.0189

13 0.0532 0.0286 0.0000 43 -0.0962 -0.2028 -0.0646

14 0.0857 0.1224 0.0000 44 0.0444 -0.0651 -0.0201

15 -0.0321 -0.0431 0.0000 45 -0.0303 -0.1490 -0.0337

16 0.0148 -0.0428 0.0000 46 0.0021 -0.0784 -0.0159

17 0.0633 -0.0024 0.0000 47 -0.0092 -0.0763 -0.0172

18 0.0407 -0.0471 0.0000 48 0.0661 0.0435 0.0144

19 0.0059 -0.0556 0.0000 49 0.0641 -0.0092 0.0331

20 -0.0643 -0.0098 0.0000 50 -0.0173 -0.1002 -0.0192

21 0.0333 -0.0598 0.0000 51 -0.0161 -0.0055 0.0301

22 0.0075 -0.0250 0.0000 52 -0.4895 -0.1168 -0.0377

23 -0.0034 -0.0534 0.0000 53 0.0671 -0.0647 -0.0027

24 0.0105 -0.0681 0.0000 54 -0.0231 -0.2349 -0.0822

25 0.0179 -0.0542 0.0000 55 -0.0725 -0.0435 -0.0052

26 0.0175 -0.0554 0.0000 56 0.0997 0.1442 0.0724

27 -0.0040 -0.0713 -0.0003 57 -0.0140 -0.2004 -0.0681

28 0.0866 -0.0958 -0.0127 58 -0.0977 -0.1343 -0.0505

29 -0.0025 -0.0218 0.0104 59 -0.0890 -0.2341 -0.0837

30 -0.1218 -0.1043 -0.0291 60 0.0521 -0.1053 -0.0440
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Table 3

Bias of Estimated Item Parameters With

Calibration Sample Size 500, Based on 100 Replications

Item a b c Item a b c

1 0.0198 -0.0388 0.0000 31 0.0851 0.0180 0.0394

2 -0.0074 -0.0307 0.0000 32 0.0084 -0.0452 -0.0007

3 -0.0065 -0.0281 0.0000 33 -0.0328 -0.0624 -0.0096

4 0.0224 -0.0562 0.0000 34 -0.0346 -0.1923 -0.0752

5 0.0100 -0.0322 0.0000 35 -0.0627 0.0180 0.0115

6 -0.0051 -0.0356 0.0000 36 -0.1362 -0.0887 -0.0237

7 0.0265 -0.0335 0.0000 37 -0.0959 -0.1177 -0.0288

8 0.0232 0.0178 0.0000 38 -0.0955 -0.0986 -0.0239

9 0.0194 -0.0507 0.0000 39 0.0568 0.0543 0.0009

10 0.0079 -0.0297 0.0000 40 -0.1474 -0.0616 -0.0186

11 -0.0004 -0.0285 0.0000 41 -0.6196 -0.1671 -0.0617

12 0.0214 -0.0359 0.0000 42 0.0125 -0.0379 -0.0056

13 0.0367 0.0105 0.0000 43 -0.0631 -0.1243 -0.0441

14 0.0499 0.0597 0.0000 44 0.0206 -0.0255 -0.0056

15 -0.0217 -0.0368 0.0000 45 -0.0167 -0.1042 -0.0211

16 0.0081 -0.0361 0.0000 46 0.0100 -0.0484 -0.0051

17 0.0228 -0.0344 0.0000 47 -0.0030 -0.0491 -0.0078

18 0.0238 -0.0269 0.0000 48 0.0525 0.0701 0.0285

19 0.0177 -0.0385 0.0000 49 0.0816 0.0053 0.0298

20 -0.0234 -0.0191 0.0000 50 -0.0322 -0.0672 -0.0092

21 0.0191 -0.0592 0.0000 51 0.0255 -0.0025 0.0257

22 0.0079 -0.0231 0.0000 52 -0.3427 -0.0794 -0.0231

23 0.0013 -0.0431 0.0000 53 0.0427 -0.0052 0.0115

24 0.0114 -0.0467 0.0000 54 -0.0358 -0.1956 -0.0681

25 0.0078 -0.0440 0.0000 55 -0.0121 -0.0165 0.0016

26 0.0130 -0.0412 0.0000 56 0.0878 0.1686 0.0809

27 0.0334 -0.0426 0.0077 57 -0.0111 -0.1504 -0.0548

28 0.0553 -0.0319 0.0019 58 -0.0568 -0.0839 -0.0306

29 0.0378 -0.0182 0.0131 59 -0.0811 -0.1833 -0.0612

30 -0.0566 -0.0742 -0.0149 60 0.0334 -0.0872 -0.0283
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Table 4

Bias of Estimated Item Parameters With

Calibration Sample Size 1,000, Based on 100 Replications

Item a b c Item a b c

1 0.0132 -0.0342 0.0000 31 0.0750 0.0020 0.0357

2 -0.0007 -0.0413 0.0000 32 0.0078 -0.0477 -0.0005

3 -0.0055 -0.0388 0.0000 33 -0.0213 -0.0454 -0.0027

4 0.0072 -0.0498 0.0000 34 -0.0302 -0.1765 -0.0667

5 0.0050 -0.0317 0.0000 35 -0.0065 -0.0145 0.0060

6 -0.0059 -0.0437 0.0000 36 -0.0674 -0.0719 -0.0125

7 0.0172 -0.0290 0.0000 37 -0.0587 -0.0871 -0.0156

8 0.0151 0.0006 0.0000 38 -0.0454 -0.0801 -0.0182

9 0.0176 -0.0424 0.0000 39 0.0367 0.0403 0.0067

10 0.0053 -0.0347 0.0000 40 -0.0768 -0.0557 -0.0110

11 -0.0068 -0.0350 0.0000 41 -0.3395 -0.0972 -0.0293

12 0.0074 -0.0367 0.0000 42 0.0096 -0.0320 -0.0004

13 0.0162 -0.0181 0.0000 43 -0.0546 -0.1030 -0.0337

14 0.0317 0.0147 0.0000 44 0.0117 -0.0314 -0.0002

15 -0.0081 -0.0421 0.0000 45 -0.0055 -0.0833 -0.0127

16 0.0042 -0.0373 0.0000 46 0.0113 -0.0500 -0.0011

17 0.0165 -0.0322 0.0000 47 -0.0071 -0.0436 -0.0045

18 0.0116 -0.0351 0.0000 48 0.0423 0.0622 0.0337

19 0.0101 -0.0451 0.0000 49 0.0589 -0.0073 0.0206

20 -0.0029 -0.0363 0.0000 50 -0.0044 -0.0575 -0.0064

21 0.0122 -0.0452 0.0000 51 0.0277 -0.0318 0.0153

22 0.0052 -0.0338 0.0000 52 -0.1896 -0.0680 -0.0138

23 0.0112 -0.0381 0.0000 53 0.0321 -0.0089 0.0147

24 0.0062 -0.0397 0.0000 54 -0.0434 -0.1845 -0.0631

25 0.0027 -0.0415 0.0000 55 0.0022 -0.0332 0.0007

26 0.0147 -0.0412 0.0000 56 0.0835 0.1716 0.0789

27 0.0634 -0.0285 0.0087 57 -0.0101 -0.1329 -0.0498

28 0.0389 -0.0122 0.0084 58 -0.0317 -0.0802 -0.0202

29 0.0602 -0.0269 0.0098 59 -0.0632 -0.1485 -0.0477

30 -0.0646 -0.0673 -0.0114 60 0.0229 -0.0792 -0.0196
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Table 5

Bias and RMSE of Ability Estimates When Item Parameters

Are Estimated With Calibration Sample Size 250

Bias RMSE

Ability MLE WLE CWLE MLE WLE CWLE

-3.0 -0.0428 0.2309 0.0756 0.7396 0.6978 0.7483

-2.5 -0.1206 0.0919 -0.0160 0.7432 0.6254 0.6990

-2.0 -0.0749 0.0490 0.0000 0.6056 0.5057 0.5662

-1.5 -0.0666 -0.0064 -0.0037 0.4396 0.3871 0.4281

-1.0 -0.0555 -0.0306 0.0117 0.3239 0.3027 0.3211

-0.5 -0.0595 -0.0514 0.0128 0.2627 0.2563 0.2595

0.0 -0.0735 -0.0716 -0.0012 0.2347 0.2323 0.2196

0.5 -0.0695 -0.0743 -0.0184 0.2301 0.2283 0.2107

1.0 -0.0341 -0.0514 -0.0105 0.2477 0.2431 0.2332

1.5 0.0110 -0.0366 -0.0112 0.3369 0.3092 0.2967

2.0 0.1080 -0.0191 -0.0169 0.5420 0.4360 0.4148

2.5 0.2134 -0.0383 -0.0607 0.7094 0.5394 0.5145

3.0 0.2117 -0.1541 -0.1960 0.7176 0.5818 0.5691

Table 6

Bias and RMSE of Ability Estimates When Item Parameters

Are Estimated With Calibration Sample Size 500

Bias RMSE

Ability MLE WLE CWLE MLE WLE CWLE

-3.0 -0.0931 0.1805 0.0870 0.7282 0.6793 0.7204

-2.5 -0.1682 0.0498 -0.0105 0.7475 0.6208 0.6741

-2.0 -0.1105 0.0216 0.0010 0.6204 0.5062 0.5467

-1.5 -0.0846 -0.0203 -0.0084 0.4471 0.3887 0.4131

-1.0 -0.0573 -0.0305 0.0037 0.3231 0.3010 0.3098

-0.5 -0.0491 -0.0404 0.0053 0.2567 0.2500 0.2516

0.0 -0.0553 -0.0527 -0.0002 0.2234 0.2209 0.2150

0.5 -0.0510 -0.0552 -0.0099 0.2157 0.2132 0.2017

1.0 -0.0222 -0.0392 -0.0038 0.2319 0.2268 0.2208

1.5 0.0134 -0.0338 -0.0043 0.3202 0.2908 0.2856

2.0 0.1010 -0.0277 -0.0044 0.5254 0.4129 0.4075

2.5 0.2029 -0.0581 -0.0397 0.6985 0.5137 0.5083

3.0 0.2021 -0.1838 -0.1677 0.7110 0.5597 0.5527
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Table 7

Bias and RMSE of Ability Estimates When Item Parameters

Are Estimated With Calibration Sample Size 1,000

Bias RMSE

Ability MLE WLE CWLE MLE WLE CWLE

-3.0 -0.1193 0.1554 0.0986 0.7229 0.6698 0.7055

-2.5 -0.1913 0.0281 -0.0025 0.7497 0.6196 0.6620

-2.0 -0.1299 0.0048 0.0051 0.6253 0.5060 0.5372

-1.5 -0.0984 -0.0323 -0.0082 0.4546 0.3922 0.4087

-1.0 -0.0643 -0.0367 0.0016 0.3245 0.3009 0.3044

-0.5 -0.0510 -0.0421 0.0017 0.2568 0.2499 0.2489

0.0 -0.0525 -0.0494 -0.0005 0.2217 0.2194 0.2151

0.5 -0.0491 -0.0530 -0.0061 0.2101 0.2071 0.1982

1.0 -0.0261 -0.0432 -0.0012 0.2243 0.2197 0.2144

1.5 0.0050 -0.0422 -0.0015 0.3109 0.2821 0.2787

2.0 0.0879 -0.0418 -0.0016 0.5150 0.4022 0.4003

2.5 0.1919 -0.0761 -0.0354 0.6935 0.5004 0.4979

3.0 0.1940 -0.2055 -0.1632 0.7103 0.5507 0.5395

Figures 1–3 illustrate that the MLE has negative bias at low ability levels and positive bias

for high ability levels (i.e., outward bias), while the bias of the WLE has an opposite pattern. The

figures also clearly show that the CWLE successfully reduced the bias in the cases considered here.

Note that the ability-estimation program used in this study searches for the maximum values

of (weighted) likelihood functions only on [−4, 4]. This restriction may cause the irregular results

at the extreme ability levels considered in this paper, especially at Level −3.

Although it reduces the bias, CWLE does not always reduce the RMSE at the ability levels

considered here. It even produces slightly larger RMSEs than WLE when the true ability is at the

left side of ability scale (see Tables 5–7 or Figures 1–3). The main reason may be that the error

terms in (16) were evaluated at the weighted likelihood estimates, instead of being evaluated at

the true ability values.
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Figure 1. Bias and RMSE of ability estimates when item parameters are estimated with

calibration sample size 250.
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Figure 2. Bias and RMSE of ability estimates when item parameters are estimated with

calibration sample size 500.
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Figure 3. Bias and RMSE of ability estimates when item parameters are estimated with

calibration sample size 1,000.
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Note that the average of the difficulty parameters in Table 1 is around zero (−0.0401).

Thus, θ̂w − θ is larger when θ is away from zero and smaller when θ is near zero. Hence, noise

has been added when we try to correct the bias by substituting [Ĵn(θ̂w) + Q̂n(θ̂w)]/Î(θ̂w) for

[Jn(θ) + Qn(θ)]/I(θ), and the noise may not be small when θ is far away from the average of

the difficulty parameters in IRT models. When θ is far away from the average of the difficulty

parameters in IRT models, θ̂m or θ̂w typically has large bias or RMSE, that is, θ̂w may be too far

away from θ, which violates the assumption
√

n(θ̂w − θ) = Op(1). To confirm this, we re-evaluated

the error terms in (16) at true ability values rather than estimated ones (but item parameters and

their covariance matrixes were still the estimated ones). That is,

θ̂wta = θ̂w − [Ĵn(θ) + Q̂n(θ)]/Î(θ).

Though it is not practical, θ̂wta did produce slightly, but uniformly smaller RMSE than θ̂w

produced. In summary, the simulation study suggests that the CWLE is a useful alternative to

θ̂m or θ̂w especially when θ is within the range of difficulty parameters.

4 Discussion

The accuracy of ability estimates is very important because estimated ability scores are

the major measurement output of a test that is analyzed using IRT models. This paper tries

to reduce the bias of the WLE of ability caused by treating item parameters estimated from a

calibration sample as if they were true. Based on the results of the simulation study, the CWLE is

effective in reducing the bias of the WLE in the cases considered here. However, CWLE does not

reduce the RMSE of the ability estimator when the values of true ability parameters are far below

the average of item difficulty parameters in a test. This weakness is not relevant in computerized

adaptive testing (CAT), since CAT always tries to match item difficulty level with the examinee’s

ability level. Therefore, in CAT, CWLE can reduce not only the bias of the ability estimator but

also the RMSE. In this study, we only test the CWLE method in limited cases. To determine the

capacity and limitations of CWLE, further theoretical and simulation studies are needed.

It is important to note that the effectiveness of CWLE depends on the calibration program

(software) used to estimate item parameters and the covariance matrixes of estimated item

parameters. Hence, one should check if a calibration program can produce reasonable estimates

of covariance matrixes before applying the CWLE method. The CWLE method is effective only
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when both the bias and the covariance matrixes of estimated item parameters are well estimated.

As discussed in Section 3, the bias of estimated item parameters, which is typically not directly

available from a calibration program, can be obtained by a Monte-Carlo simulation with some

replications or the bootstrap method. As a by-product, one can also obtain sample covariance

matrixes of estimated item parameters based on the bootstrap method. These covariance matrixes

can be used to check the accuracy of the covariance matrixes provided by the calibration program

and/or applied directly to (16).

Another way to deal with the uncertainty about item parameters is to make use of the

expected response functions (ERFs; Lewis, 1985, 2001; Mislevy, et al., 1994). An ERF is the

expectation of an IRF with respect to the posterior distributions of item parameters. This

Bayesian approach takes the uncertainty about item parameters into account by substituting

ERFs for IRFs in the likelihood function. Lee and Zhang (2007) to compared this method with

CWLE by a simulation study. For details, see Lee and Zhang.
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Notes

1 In Bayesian setting, item parameters are usually assumed to be independent between items,

that is, {(ai, bi, ci)} is an independent sequence of random vectors (see Lewis, 2001). Lewis argued

that this is almost a necessary condition. In practice, only the covariances of item parameter

estimators within an item are available and the covariances of item parameter estimators between

items are zero. Thus, it is not too unreasonable to assume that {(εai, εbi, εbi)} is an independent

sequence of random vectors.
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